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I 

ABSTRACT 

This document is concerned with practical procedures for describ- 
ing andanalyzing the frequency composition of spacecraft launch vibration 
data. Since such data are generally nonstationary, conventional analysis 
techniques based upon time averaging individual sample records of data 
can produce misleading results. To help clarify the basic problems, the 
concept of stationarity is reviewed, and theoretical methods for describing 
the frequency composition of nonstationary data are summarized. Both 
ensemble averaging and time averaging procedures are discussed with 
emphasis on the various errors associated with each approach. Experi- 
mental studies of actual spacecraft launch vibration data are then pursued 
to seek out typical or common trends which can be exploited to improve 
practical time averaging analysis procedures. Based upon the experi- 
mental studies as well as theoretical ideas, a specific procedure is recom- 
mended for the spectral analysis of nonstationary spacecraft vibration 
data, based upon time averaging short selected sample records of data. 
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1. INTRODUCTION 

The spectral analysis of flight vehicle vibration data is relatively 

well defined and straightforward, at least in theory, so long as the 

vibration data are “stationary” in nature. In practical terms, stationary 

vibrations are those whose average characteristics do not change with 

time. For example, the vibration environment in a jet airplane during 

a continuous cruise at a fixed altitude with constant airspeed and invariant 

atmosphere conditions would probably be stationary for the duration of the 

cruise. The measurement and interpretation of power spectral density 

functions for stationary vibration data is discussed in Reference 1 and 

elsewhere. 

Unfortunately, not all flight vehicle vibration environments are 

stationary during pertinent flight phases. For example, the vibration 

environment in a spacecraft during launch is generally nonstationary, i. e., 

the characteristics of the vibration change continuously throughout the 

launch phas e. The measurement and analysis techniques outlined in 

Reference 1 are not strictly applicable to such data (although they are 

widely used), because those techniques are based upon time averaging 

procedures which inherently assume stationarity. 

From a theoretical viewpoint, nonstationary data should be analyzed 

by ensemble averaging procedures; i. e., by averaging over a collection 

of sample records at specific instances of time. However, as will be 

illustrated later, ensemble averaging requires data from a large number 

of repeated experiments. Although ensemble averaging is the most 

straightforward approach to the problem, it is often difficult in actual 

practice to acquire data from a sufficiently large number of repeated experi- 

ments. This is particularly true for spacecraft applications where only a 
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few or perhaps just one experiment (test launch) may be performed due to 

the high cost of such experiments. Hence, for practical reasons, it is 

usually necessary to employ some sort of time averaging procedure for 

the analysis of spacecraft vibration data, regardless of the fact that such 

data are generally nonstationary. 

The most common procedure currently used to analyze spacecraft 

launch vibration data is to compute individual time averaged power spectra 

for short time intervals covering significant launch events, such as lift- 

off, transonic flight and maximum dynamic pressure flight. Another approach 

is to compute a “time varying spectrum” over the entire launch phase. This 

is accomplished by continuous averaging (usually with a lowpass RC smooth- 

ing filter) at each frequency of interest, where the averaging time used is 

short relative to the length of pertinent events during launch. For this 

case, a parallel filter type instrument is desirable, although the same 

results can be obtained by repeated playback through a single filter instru- 

ment where the filter is shifted in frequency by one bandwidth for each 

playback. This general approach is suggested in References 2 and 3. 

The above procedure produces “usable” information in the sense that 

the resulting “time varying spectrum” can be readily translated into a 

vibration test specification. The usual procedure is to form a “maximum 

spectrum I’ based upon the highest level observed at each frequency of the 

“time varying spectrum. ‘I A stationary vibration test is then performed 

using the “maximum spectrum. ‘I This approach to the problem may be 

completely acceptable. However, certain theoretical and practical questions 

do arise. For example, how do the above “time varying spectra” and the 

resulting’maximum spectra” relate to theoretical spectral representations 

for nonstationary data? How long should sample records be and where should 

they be selected during the launch phase? How long should the averaging time 

be? How can statistical errors be minimized in practical terms? The 

purpose of this document is to help answer these important questions. 
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2. CLASSES OF NONSTATIONARITY 

2.1 REVIEW OF BASIC DEFINITIONS 

Any sample time history record of a random physical phenomenom 

will represent a unique set of circumstances that are not likely to be 

repeated. In other words, a given sample time history record is merely 

a special example out of a large set of possible records that might have 

occurred. The collection of all possible records that might have occurred 

is called an ensemble which forms a random process. Hence, a given 

sample record of a random physical phenomenom may be thought of as a 

single physical realization of a random process. Hypothetically, for con- 

tinuous phenomena such as mechanical vibrations, the number of possible 

physical realizations (sample records forming the random process) would be 

infinitely large. 

Let y(t) 
f I 

denote the ensemble of sample records forming a random 

process, and let yk(t) be the kth sample record from the ensemble. 

The properties of the random process may be computed by taking averages 

over the ensemble at any instant of time t 
1’ 

as illustrated in Figure 1. 

For example, the mean value at time t 
1 

and the autocorrelation function at 

times t 
1 

and t 
1 

t-r for the random process would be given by 

N 

p (t ) = lim A 
Y l c y It ) 

N-POX k=l k ’ 

R (t 
Y 1’ 

tl t-r) = lim k 
N+CD 

(la) 

(lb) 
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I I 
I 

y,(t) I 

I 

I 

c l. 

5 
t1 7-T 

Figure 1. Ensemble of Sample Records 

For the general case where the properties defined in Eq. (1) vary with 

time tl, the random process is said to be nonstationary. For the special 

case where the properties defined in Eq. (1) do not vary with time, the 

random process is said to be weakly stationary. That is, if 

Pybl) = Pyb2) = 
IJ.Y 

R (t y 1’ 
t tT) = 

1 
R (t 

Y 2’ 
t2 + 7) = Ry(d 

then y(t) 
E I 

is weakly stationary. If all higher order moments of the random 

process determined by ensemble averaging are also time invariant, the 

random process is said to be strongly stationary. In most cases, verification 

of weak stationarity is sufficient to justify an assumption of strong stationarity. 
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If a random process is stationary, then with few exceptions in 

practice, the ensemble averages in Eq. (1) can be replaced by time 

averages over any one sampl’e record from the ensemble. That is, if 

c 3 y(t) is stationary, 

T 
1 

Py = lim T tit) dt 
T-*W 

T 
1 

RY(T) = lim T / 
tit) Y(tfT) dt 

T-w 0 

(2a) 

(2b) 

The justification for the above relationships evolves from the “ergodic 

theorem, I’ which effectively states that time averages can replace ensemble 

averages for a wide class of stationary random processes. Note that the 

ergodic theorem does not apply to nonstationary random processes. 

2. 2 PRACTICAL INTERPRETATIONS 

When flight vehicle vibration data are gathered and analyzed, the ulti- 

mate objective is to obtain information concerning the vibration environment 

to be expected during future missions for that and all similar vehicles. 

However, the measurements obtained from data for a single flight of one 

vehicle will strictly describe only the vibration environment in that vehicle 

for that interval of time in the past when the data were obtained. If such 

data are to be used as predictors for the vibration environment during future 

missions for that and other similar vehicles, it is necessary to make 

certain assumptions involving stationarity and ergodicity. 

In order to place the concepts of stationarity and ergodicity into a mear 

ingful physical context, consider the specific case of a vibration response 

at some point on the structure of a flight vehicle. Assume a continuous 

time history record of that vibration response is obtained for a 

given mission of the flight vehicle. That time history record is actually a 

sample record from a random process which represents the vibration 

l- 
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response at that point. The other sample records needed to completely 

define the random process can be visualized as the time history records 

for the vibration responses at that same point during identical missions 

performed by an infinitely large collection of identical flight vehicles. 

The hypothetical ensemble of sample records described above cannot, 

of course, be physically realized. However, such a collection of sample 

records could be simulated by collecting data from repeated flights of one 

or more flight vehicles of the same type and performing similar missions. 

All sample records would be assigned a common time base where the start 

of the flight would be t 
0’ 

The result would be a physical approximation to 

an ensemble forming a random process. In this context, s tationarity and 

ergodicity are interpreted as follows. The mean value and autocorrelation 

function for the vibration at any instant of time measured from the start 

of the flight could be estimated by averaging over the collection of sample 

records. If these estimated properties did not vary significantly from one 

instant of time to another, at least during some specific phase of the flight, 

then the vibration during that flight phase would be considered stationary. 

An ergodic assumption means that the vibration during that flight phase for 

one mission of one flight vehicle may be considered representative of the 

vibration which will occur during that flight phase for all similar missions 

of all flight vehicles of the same type. 

Now consider the case of nonstationary vibration data such as would 

occur in a spacecraft during launch. In classical terms, an ergodic 

hypothesis is not valid here since the data is not stationary, even for 

limited time intervals. At first glance, this would seem to imply that the 

vibration recorded during one launch cannot be considered representative of 

the vibration during any other launch. However, it is known intuitively as 

well as from experience that this implication is not necessarily true. For 

example, assume the rms value for the vibration response at some point 
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on a spacecraft structure is measured over each of a contiguous series of 

one second long time intervals covering the entire launch phase. The 

result would be a sequence of rms values which describe an “rms value 

time history ‘I for the vibration. Further assume that similar rms value 

time histories are obtained at the same location for several different 

launches of spacecraft of the same type under the same conditions. One 

would intuitively expect these rms value time histories to be similar from 

launch to launch, and indeed they will be as indicated in Figure 2. This 

figure presents three broadband rms value time histories for the vibration 

response measured at the same location on three different ATLAS-AGENA 

vehicles during launch. 

The results in Figure 2 clearly illustrate that the nonstationary vibra- 

tion data for one spacecraft launch is at least somewhat representative of 

the data for other launches of similar spacecraft. Obviously, something 

similar to an ergodic hypothesis appears justified. This is true because a 

special type of nonstationary random process is involved, where each 

sample record has a common underlying time varying characteristic. In 

other words, there is clearly a deterministic factor in the nonstationary 

random process which describes the vibration in a spacecraft during 

launch. It appears reasonable that this nonstationary random process might 

be represented by a stationary random process with deterministic time 

varying parameters. Assuming the time varying parameters can be 

identified and separated out, the data from one launch can be used to deter- 

mine the properties of the vibration for all other launches. 

2. 3 SPECIAL NONSTATIONARY MODELS 

Various types of nonstationary random processes have been considered 

in the past as models for specific physical phenomena. For example, a 

simple model for a nonstationary random process with a time varying mean 

7 



s Launch No. 1 

----a-- Launch No. 2 
_,-&,- Launch No. 3 

v I I 1 1 I 1 1 -4 0 4 8 -1’6 ’ -f2 ’ -b ’ -4 ’ b ’ 4 ’ 4 ’ 

lift-off Mach 1 
time in seconds 

Figure 2. RMS Vibration Time Histories for Three Launches of 
the Same Type of Spacecraft 
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value is given by a process (Y(t)) where each sample record is of the form 

y(t) = A(t) + x(t) (3) 

Here, A(t) is a deterministic function and x(t) is a sample record from a 

stationary random process (x(t)) * Illustrations of interest in this model 

are presented in References 4 and 5. 

As a second example, a common model used to describe a nonstationary 

random process with a time varying mean square value is given by the process 

(y(t)> where each sample record is of the form 

y(t) = A(t) x(t) (4) 

Again, A(t) is deterministic and x(t) is a sample record from a stationary 

random process (x(t)> - Studies of this model are presented in References 

6 and 7. As will be shown later, the model of Eq. (4) leads to an important 

special case. Specifically, if the fluctuations of A(t) are very slow rela- 

tive to the fluctuations of x(t) , c > then the spectral characteristics of 
( 1 y(t) 

can be described by a time varying power spectrum approximated by 

Gy(t, f) N, A’(t) Gx(f) 

Assuming x(t) ( > has a mean square value of unity, the function A(t) is 

the time varying root mean square (rms) value of the nonstationary process 

( y(t)) - Nonstationary random processes of this form are referred to in 

Reference 8 as being “locally stationary. ‘I A locally stationary random 

process can be visualized as one whose power spectrum varies with time 

such that the mean square value (area under the power spectrum) changes 

while the general shape of the power spectrum remains unchanged. 
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For the case of spacecraft vibration data, the mean value of the data 

can usually be considered time invariant. It is the mean square value of 

the vibration which is the significant ‘time varying parameter. Furthermore, 

the variations in the mean square value are usually very slow relative to 

the instantaneous fluctuations of the vibration. Hence, a model similar to 

Eq. (5) might be a suitable representation for spacecraft vibration data, at 

least for certain time intervals during the launch phase. If so, the measure- 

ment and description of spacecraft vibration environments would be greatly 

simplified, as will be discussed later. These possibilities are pursued in 

this document. 
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3. THEORETICAL BACKGROUND 

3.1 SPECTRAL REPRESENTATIONS FOR NONSTATIONARY DATA 

From the viewpoint of both engineering interpretation and physical 

simulation, the single most valuable descriptive property for stationary 

vibration data is a power spectrum, or some similar measure of frequency 

composition. It follows that some type of spectral representation would 

also be valuable for nonstationary vibration data. Several such spectral 

repres‘entations have been suggested over the years, including the following. 

3. 1. 1 Instantaneous Power Spectrum 

One of the earlier methods for describing the spectral composition 

of nonstationary data is in terms of a Fourier transform of a time varying 

autocorrelation function. From Eq. (lb), the autocorrelation function for a 

nonstationary random process, 
c 3 

Y(t) 9 may be defined by 

N 

R (t y l’t2)= lim 
1 

c y (t )Y (t 1 
N+w 

s k=l kl k2 

By making the change of variables, T = t - t 
2 1 

and t = (tl + t2)/ 2, Eq. (6) 

reduces to 

N 

Ry(t, ‘-1 = N’,“, i zl Y&-f) y,(t+;) 17) 

An expression which is a function of time and frequency can then be obtained 

by taking the Fourier transform of Ry(t, r), as follows. 

Syk f) = 

-00 
Ry(t, T) cos 2Trfr dr 

11 
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Note that s (t, f) is defined for both positive and negative values of f. 

The quantitt sy(t, f) in Eq. (8) is called the instantaneous power spectral - 

density function for the process ( > y(t) ’ This spectral function can take 

on negative values for certain cases. However, an integral of the.function 

over either time or frequency will always yield nonnegative results which 

are physically meaningful. 

The instantaneous power spectral density function is not 

directly measurable in the frequency domain. An experimental 

estimate for the function can be obtained only by, 1) computing the 

time varying correlation function Ry(t, T) from an ensemble average 

at each value of t and i of interest and, 2) computing the Fourier 

transform for each value of t of interest. See References 9, 10, and 

11 for more extensive developments and discussions. 

3. 1. 2 Generalized Power Spectrum B-m-- 

A second method for describing the spectral composition of 

nonstationary data is in terms of a double Fourier transform of the 

time varying autocorrelation function defined in Eq. (6). The result 

is a double frequency expression as follows. 

W  W  

$( y fl’ f2) = R (t t )e 
j2n(fltl -f2t2) 

y 1’ 2 
dtl dt2 (9) 

-00 -w 

Note that $ (f 
Y 1’ 

f2) is defined for both positive and negative values of 
1 

fl and f2. The quantity Jv(flj f2) in Eq. (9) is called the generalized 
I  

power spectral density function for the process (y(t)) . This spectral ---- 

description for nonstationary data is of great value for analytical treat- 

ments of nonstationary problems. However, like the instantaneous power 

spectral density function, it cannot be directly measured in the frequency 

domain. See Reference 7, pages 2-7, for more detailed discussions. 
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3. 1. 3 Time Varying Power Spectrum 

A third method for describing the spectral composition of non- 

stationary data is in terms of an expression given by 

Gy(t, f) = B ’ +“, (t, f, B) (10) 

where $‘(t, f, B) is the instantaneous mean square value of that part of 

( 1 

Y 
y(t) which is passed by a narrow bandpass filter with a bandwidth of 

B and a center frequency of f. Note that t$z(t, f, B) is defined only 

for positive values of f. The value of +z(t, f, B) is given theoretically 

bY 

$;(t, f, B) = 2 
w 

O” 
// 

H(fl)H:“(f2) Jy(fl, f2) e 
jZTr(f 1 -f2)t 

dfl df2 (11) 

-03 -00 

where H(f) is the frequency response function of the narrow bandpass , 

filter, H’:‘(f) is the complex conjugate of H(f), and $ (f f ) is the 
y 1’ 2 

generalized power spectral density function for c > y(t) . The quantity 

G (t, f) in Eq. (10) is called the time varying power spectral density 
Y 

function for the process (YW) - This function will always be nonnegative. 

The time varying power spectral density function is directly 

measurable in the frequency domain by ensemble averaging procedures. 

Specifically, the bandwidth limited mean square value is given in terms 

of an ensemble average by 

+E(t, f, B) = lim i 
N 

N--cm c 
y;(t> f, B) 

k=l 

(12) 

where y 
k 

(t, f, B) is the value of the kth sample record after narrow 

bandpass filtering with a bandwidth of B and a center frequency of f. 

Hence, a time varying spectrum can be experimentally estimated by 

computing ensemble averages at specific times for a finite collection 

of records. See Reference 7, pages 7- 10, for more detailed discussions. 
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The concept of the time varying power spectrum involves one 

serious restriction. This concerns the specification of the bandwidth 

B in Eq. (10). On the one ‘hand, B should be very narrow so that 

G (t, f) will present properly resolved spectral information for all 
Y 

values of f. On the other hand, B should be sufficiently wide to 

permit proper response to nonstationary time trends in the data. That 

is, if B is too narrow, time trends in the data will be smoothed out 

since the narrow bandpass filtering operation is equivalent to taking a 

weighted time average. In more practical terms, if Gy(t, f) is to 

properly describe the time trends in the nonstationary data, the 

narrow bandpass filter must have a rise time which is very rapid 

compared to such time trends. The rise time for an ideal rectangular 

bandpass filter with a bandwidth of B cps is approximated by 

Tf z l/B (13) 

3. 1. 4 Short Time Averaged Power Spectrum -- 

A final method for describing nonstationary spectra involves the 

computation of a time varying power spectrum as defined in Eqs. (10) 

and (12), except the ensemble average is replaced by a short time average. 

The result is a short time averaged power spectral density function 

given by 

2 
Ttt, f, T) = + y (t, f, B, T) (14) 

where 

y2(t, f, B, T) = $ 
/ 

Y’(& f, B) dc 

t-T 
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The term y(g, f, B) is the value of the sample record being investigated 

after narrow bandpass filtering with a bandwidth of B and a center fre- 

quency of f. The operations, in Eq. (14) define the currently used 

procedure to analyze nonstationary data, as discussed in References 2 and 

3, and here in Section 1. 

A short time average power spectrum is clearly much easier to 

measure in practice than the time varying power spectrum discussed 

in Section 3. 1. 3. Only one sample record of the nonstationary process 

of interest is required (there is no ensemble averaging). Furthermore, 

the smoothing effect introduced by the narrow bandpass filter is less 

of a problem since time averaging is desired. On the other hand, the 

nonstationary process in question must be such that all time trends are 

deterministic and, hence, represented in every sample record which 

might be obtained. Also, the time averaging operation introduces a bias 

error which can be reduced only at the expense of increased variability 

errors. These matters are discussed further in the next section. 

As the averaging time T in Eq. (14) is increased, the time 

varying spectral characteristics of the data are blurred such that 

G (t, f, T) is no longer a function of time t. In the limit where the 
Y 

averaging time includes the entire record length, a time averaged power 

spectral density function is obtained. In terms of the three previously 

defined spectra, the time averaged power spectral density function for 

the process 
c > y(t) is given by 

T 
2 

Cy(f) = lim T 
Thw / 

sy(t, f) dt 

0 

Cy(f) = 2 dy(f, f) ; (fl = f2 = f) 

(15) 

(16) 

(17) 

T 
1 

Gy(f) = lim 7 
T-w / 

Gy(t, f) dt 

0 
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Equations (15), (16) and (17) will yield identical results. Note that the 

quantity ‘;y’f) is physically realizable (defined for positive frequencies 

only). This is accomplished in Eqs. (15) and (16) by folding over the 

negative frequencies to obtain the following relationships. 

Ey(f) = Fy(t, f) = 2 Fy(L f) ; f ’ 0 (18) - 

Cy(f) = Ay(f, f) = 2 Jy(f. f) ; f 1 0 (19) 

One final point should be noted here. The computation of a time 

varying power spectrum could also be accomplished by curve fitting 

procedures instead of either ensemble or short time averaging procedures. 

Specifically, the bandwidth limited mean square value in Eq. (10) could 

be estimated at each frequency by making a “best” fit over the record 

length with a set of orthogonal polynomial functions. This approach is 

suggested and studied theoretically in References 5 and 6. 

3. 1. 5 Experimental Illustration 

For purposes of illustration, consider a nonstationary random 

process (y(t)} where each sample record is given by 

y(t) = A cos 2rfOt x(t) (20) 

Here, x(t) is a sample record from a stationary process x(t). A time 
c > 

dependent autocorrelation function for ( 1 y(t) is obtained by substituting 

Eq. (20) into Eq. (7) as follows. 

R (t, T) = A2 cos 2rf0 cos 2TFf 
Y 

o (21) 

Here, RX(T) is the autocorrelation function for the stationary random 

process, (x(t)> * Noting the identity, cos (a - b) cos (at b) = $(cos 2a t cos Zb), 

Eq. (21) reduces to 
2 

Ry(t, T) = 4 (cos 2TrfO-r t cos &rfot) RX(~) 
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The instantaneous power spectral density function for (y(t)} is 

.obtained by substituting Eq. (22) into Eq. (8) as follows. 

A2 O” 
sy(t, f) = 2 / 

(cos 21TfoT t cos hrfot) cos 2rf-rRx(~) dr 
-00 

(23) 

cos 2rr(f-fO)T t cos 2a(ftfo)T t 2 cos 2nf-r cos 45rfOt RX(~) dr 1 

Since RX(~) is an even function of T, the integral of cos 2n(f + fo)r RX(~) [I 1 
is simply a Fourier transform of RX(~) which equals S x(f + fo). Hence, 

Eq. (23) reduces to 

2 
sy(t, f) = Ar 

[ 

2 
Sx(f - fo) t Sx(f t fo) 

I [ 
t + Sx(f) cos 41Tfot 

I 
(24) 

where Sx(f) is the power spectral density function (defined for both positive 

and negative frequencies) for the stationary random process 
E 3 

x(t) . From 

Eqs. (16) and (lq), the physically realizable time averaged power spectrum 

is given by 

Gx(f - fo) + Gx(f + fo) 1 (25) 

In words, Eq. (25) states that the time averaged power spectrum for 

E I 
y(t) consists of two sidebands, each offset in frequency by +fo, and 

each having the same power spectrum (excluding a gain factor) as 
il 1 

x(t) * 

This well-known result is the basis for the heterodyning principle 

employed by most analog spectrum analyzers to translate an applied 

signal in frequency past a single fixed bandpass filter. Note that the same 

result could have been obtained from either the generalized power spectrum 

or the time varying power spectrum using Eqs. (17) or (18). 

17 



The theoretical result in Eq. (25) is illustrated for actual experi- 

mental data in Figure 3. Here, c > x(t) is narrow bandwidth Gaussian noise 

with an approximately rectangular bandpass characteristic having a 

bandwidth of B = 20 cps and a center frequency of f = 100 cps. For 

convenience, a constant of A = 7/2 is used so that the mean square value 

of x(t) c 1 and y(t) c > are equal. The time averaged power spectrum for a 

sample record y(t) is computed using an averaging time which is very 

much longer than each nonstationary cycle. A detailed discussion of the 

test set-up and measurement parameters is presented in Appendix A. 

In Figure 3(a), the modulating frequency is zero; i. e., a DC voltage 

was used for A(t). Hence, this case constitutes the spectrum of the 

underlying stationary process c > x(t) 9 since each sample record y(t) = x(t). 

In Figure 3(b), the modulating frequency is f. = 1 cps. In this case, the 

spectrum for c > Y(t) is not significantly different from the spectrum for 

(x(t)} because the two sidebands are offset by only + 1 cps. As the 

modulating frequency increases, the power spectrum for {y(t)} gradually 

changes, as seen in Figures 3(c) through 3(e), and finally breaks into two 

distinct sidebands, as seen in Figure 3(f). 

The illustration presented in Figure 3 constitute only one case. 

However, the frequency shifting or heterodyning displayed in Figure 3 will 

occur for any desired spectral characteristics of(x(t9 , although the results 

may not always be so obvious. For example, assume {x(t)} is white noise; 

i. e., a random process with a uniform power spectral density function over 

all frequencies. In this case, by definition, G(f - fo) = G(f) for all fo. 

Hence, from Eq. (25), 
2 

Gy(f) = AT G,(f) (26) 

In words, the time average power spectrum for c > Y(t) will be identical 

(excluding a gain factor) to the power spectrum for c > x(t) 9 independent of fo. 
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3. 2 ERRORS IN NONSTATIONARY SPECTRA MEASUREMENTS 

3. 2.1 Stationary Power Spectrum 

Before discussing errors in nonstationary spectra measurements, 

it is desirable to review the errors associated with stationary power 

spectra measurements. The power spectral density function for a stationary 

random process c > x(t) may be defined by 

Gx(f) = lim i 
B--O 

+z (f, B) (27) 

where 

T 

+z (f, B) = lim $ 
I 

x’(t, f, B) dt 
T--w 

0 

The term x(t, f, B) is the value of the sample record being investigated 

after narrow bandpass filtering with a bandwidth of B and a center fre- 

quency of f. 

The limiting operations in Eq. (27) cannot, of course, be achieved in 

practice. Hence, the power spectral density function can only be estimated 

based upon a finite bandwidth and averaging time, as follows. 

T 

/ 
x2(t, f, B) dt (28) 

0 

The resulting estimate will include two types of errors. The use of a 

finite bandwidth for the filtering operation introduces a systematic or 

bias error in the estimate. The use of a finite time interval for the averaging 

operation introduces a variability or random error in the estimate. Th.ese 

two errors are now discussed. 
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Assume a stationary random process, {x(t)) , has a true power 

spectral density function of Gx(f). Further assume an estimate Gx(f1) 

is computed at frequency fl using a finite bandwidth B. Although the 

resulting estimate applies only to a frequency interval, it is usually 

associated with some specific frequency for convenience of presentation. 

The specific frequency used is often the center of the bandwidth B. The 

result is a bandwidth bias error 
‘b’ 

as illustrated in Figure 4. 

Gx(f) 

/i 
I I 
I 

I 
I I 
I 

I 
I 1 I 

!B 1 I f 

fl-z fl 
f& 

Figure 4. Illustration of Bandwidth Bias Error 

From Reference 12,Chapter 5, the bandwidth bias error described in 

Figure 4 is approximated by 

2 
B 

‘b = 24 G;(f) 

21 

(29) 



where G:(f) is the second derivative of Gx(f) with respect to f. Hence, 

the bandwidth bias error is a function of the shape of the spectrum as well 

as the bandwidth B. For a fixed bandwidth, pb becomes small as Gx(f) 

becomes more smooth. In the limit where G’ (f) is a constant, 
X 

b+, = ’ 

independent of B. For a given power spectrum, pb becomes small as B 

becomes small. In the limit where B is zero, ).L~ = 0 independent of G (f). 
X 

Now consider the case where a stationary random process c 1 x(t) 

is repeatedly sampled to obtain M number of independent sample records, 

XkWi k= 1, 2, 3, . . . . M. Assume an estimate of the power spectral 

density function at frequency fl is computed from each of the sample records 

using the same bandwidth and averaging time. Since each sample record 

represents a unique set of circumstances, the estimates will vary from 

one sample record to another, as illustrated in Figure 5. 

Gx@l) 

1 
. *1 -- 

-T- 
--- 

8 

-.L 
*2 

-T 

0 -L 

‘~“&‘-VL-y---- k 
1 2 3 4 5 M 

Figure 5. Illustration of Random Error 
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The variation in the 

stitutes a random error. 

described by the standard 

definition is 

where A 
k 

is the deviation 

sample estimates illustrated in Figure 5 con- 

The magnitude of this random error may be 

deviation of the sample estimates, which by 

of the kth estimate from the true value at 

(30) 

frequency f 1. From Reference 12, Ch. 5, this standard deviation is 

approximated by 

G(f) 0-T - 
-l/G 

(31) 

where B is the bandwidth of the narrow bandpass filter in cps and T is 

the averaging time in seconds. Hence, the random error is a function of 

both the bandwidth and the averaging time. 

A comparison of Eqs. (29) and (31) immediately reveals the conflicting 

requirements on the selection of a proper bandwidth B for a power spectral 

density analysis of stationary random data. Specifically, the bandwidth 

bias error becomes large as B becomes large while the random error 

becomes large as B becomes small. Assuming the available sample re- 

cord length T is limited, the selection of an analysis bandwidth B is 

always a compromise between these two errors. Of course, if the available 

sample record length is unlimited, both errors can be made as small as 

desired by increasing T while reducing B to obtain a large value of the 

product BT with a small value of B. 
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3. 2. 2 Time Varying Power Spectrum 

Now consider the time varying power spectral density function, 

Gy(t, f), defined by Eq. (10). Assume Gy(t, f) is estimated using a finite 

bandwidth B which is sufficiently wide to avoid any significant smoothing 

of nonstationary time trends in the data. Further assume the ensemble 

average is performed over a finite number of sample records, N. That is 
N *. 

Cy(t, f) = & c 
k=l 

y:(t, f, B) (32) 

The resulting estimate will again include two types of errors. The use of 

a finite bandwidth for the filtering operation introduces a bandwidth bias 

error 
‘Ib’ 

and the use of a finite number of records for the averaging 

operation introduces a random error cr. These two effects are analogous 

to the results for estimating power spectra of stationary data, as discussed 

in Section 3. 2. 1. In fact, the nature of the errors at any instant of time 

will be as illustrated in Figures 4 and 5. An exact expression for the 

bandwidth bias error has not been established, although Eq. (29) should 

provide a reasonable approximation in most cases. Noting that the time 

varying power spectrum is effectively a collection of ensemble averaged 

mean square values, the random error at any instant of time is given 

from Reference 6, pp. 15-18, as 

- 

o- = 
-J 

$ Gy(t, f) 

It is important to note here that the random error u and the bias 

error “b 
are independent. Hence, the bias error can be controlled by 

reducing the bandwidth of the filtering operation without adversely effecting 

the random error. On the other hand, the random error can be reduced 

only by increasing the number of sample records. The acquisition of a 

sufficient number of sample records may be difficult to accomplish in 

practice. For example, if the estimate is to have a standard deviation equal 

to 10% of the quantity being measured, then u/G(t, f) = 0. 10, and the 

number of sample records required is N = 200. 
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3. 2. 3 Short Time Averaged Power Spectrum 

Finally, consider the short time averaged power spectral density 

function, ey(t, f, T), defined by Eq. (14). Assume Gy(t, f, T) is 

estimated using a finite bandwidth B which is sufficiently wide to have 

an effective averaging time less than the finite averaging time T (T > l/B). 

It follows that 
t 

;y(t, f, T) = kT 
/ 

y2( E.9 f, B) (34) 

t-T 

The resulting estimate will include, as before, a bandwidth bias error 

introduced by the use of a finite bandwidth for the filtering operation, and 

a random error introduced by the use of a finite time interval for the 

averaging operation. These two effects are again analogous to the results 

for estimating power spectra for stationary data, as discussed in 

Section 3. 2. 1. However, there is another source of bias in the short 

time averaged power spectrum introduced by the averaging operation. 

This additional bias error is illustrated in Figure 6. 

I 
I 
I it 

tl - T 
tl 

Figure 6. Illustration of Time Interval Bias Error 
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Assume a nonstationary random process, c > y(t) , has a true time 

varying power spectral density function at any frequency fl, as illustrated 

in Figure 6. Further, assume a short time averaged power spectral density 
A 

estimate e (t , f T), 
y 1 1’ 

is computed over a time interval from t 
1 

- T to 

5. 
Although the resulting estimate applies only to a time interval, it is 

usually associated with some specific instant of time for convenience of 

presentation. The specific time used is often the end of the interval T, 

as noted in Figure 6. Of course, any other instant of time such as the 

center of the interval or the beginning of the interval could also be used. 

In any case, the result is a time interval bias error, 
%’ 

It is clear that the time interval bias error is a function of the time 

trend in the data as well as the averaging time T. For a fixed averaging 

time, 
% 

becomes small as c > y(t) becomes more stationary. In the limit 

where 
( > y(t) is stationary, kt = 0 independent of T. For a given time 

trend, pt becomes small as T becomes small. In the limit where T 

is zero, pt = 0 independent of (y(t,>. 

From the above discussion, it is desirable to make the averaging time 

T short to minimize the bias error pt. However, as T becomes short, 

the random error o- becomes large. An exact expression for the random 

error has not been established, although the general form of the error is 

similar to the error expression for stationary data given by Eq. (31). 

That is, in most cases, the random error of the estimate can be reduced 

by increasing either the bandwidth B or the averaging time T. On the 

other hand, increasing B will increase the bandwidth bias error p 
b’ 

and 

increasing T will increase the time interval bias error pt. Hence, the - 

selection of a bandwidth B and an averaging time T for a short time 

averaged power spectral density measurement is always a compromise 

between a random error and a bias error. The same situation exists for 
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power spectra measurements of stationary data, as discussed in Section 

3.2.1. For the stationary case, however, both the bias and random errors 

can be reduced to any desired level by increasing the averaging time T, * 

since t.k 
t 

= 0 for stationary data measurements. This is not true for 

nonstationary data measurements. 
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3. 3 SPECIAL APPLICATIONS 

Consider the product type nonstationary random process defined in 

3. (4). The autocor’relation function for this process at any two times, 

tl and t 
2’ 

is given by 

N 
R (t 

Y 1’ 
t2) = lim c A(tl) A(t2) xk(tl) xk(t2) 

N-o0 k=l 

Letting tl = t - r/2 and t2 = t t -r/2, Eq. (35) reduces to 

RY(t2 T, = A(t 
- ;) A(t t ;) Rx(~) 

(35) 

(36) 

where R (T) is a stationary autocorrelation function. If the fluctuations of 
X 

A(t) are relatively slow compared to the fluctuations of (x(t)> , then 

A(tt;) ti A(t - ;I f or all values of T where RX(~) is significantly 

different from zero. Thus, for this case, 

Ry(t, 7) = A’(t) Rx(~) (37) 

which is a time varying autocorrelation function of a form referred to as 

being “locally stationary. ” A time varying power spectral density function 

for this case is given by the Fourier transform of R (t, T), as follows. 
Y 

Gy(L f) = A’(t) Gx(f) (38) 

For example, consider the cosine product type nonstationary random 

process defined in Eq. (20). For this case, A(t) = A cos 2Trft. By a 

rather lengthy development presented in Reference 12, Chapter 9, which 

assumes the bandwidth of the data is wide compared to f 
0’ 

the time 

varying power spectrum for this model is given by 
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f+(B/2) 

A2 1 2 
Gy(t, f) = 4 - fo) + Gx(f f fo) df t Gx(f)+ cos 45rfOt (39) 

Assume the modulating frequency is very low compared to the lowest data 

frequency of interest (f. CC f), and that the spectral density measurements 

are highly resolved (B much narrower than any spectral peaks in the data). 

The time varying power spectrum is then given approximately by 

Gyk f) e 
A2 
2 1 f cos 4,,,,] Gx(f) = [A2 cos22rrfOt ] Gx(f) = A2(t)Gx(f) (40) 

The same result can be arrived at directly using the instantaneous power 

spectrum given by Eq. (24). For f. CC f, Eq. (24) reduces to 

A2 
sy(t, fN2 

[ 
1 + cos 45rfOt 

I 
Sx(f) 

Hence, the cosine product nonstationary random process reduces to the 

locally stationary form defined in Eq. (38) as f. becomes small compared 

to f. 

The important point to be observed here is as follows. Assuming a 

nonstationary random process defined by Eq. (4) is locally stationary, 

a short time averaged power spectrum for a sample record will yield 

from Eq. (40) 

Gy’t. f, T) = A& T) Gx(f) 

where 

(41) 

(42) 

t 

A; (t, T) = A2 (5) dE 

t-T 
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Thus, the power spectrum computed by a time average will be the same 

(except for a gain factor) as the time varying power spectrum, independent 

of the averaging time. 

The above result can often be applied to improve the quality of non- 

stationary vibration data analysis as follows. If the nonstationary vibration 

data of interest fits a locally stationary model, at least over some defined 

time interval, then a time varying power spectrum for the data during that 

time interval can be established by two simple steps. The first step is to 

measure an over-all rms value (or mean square value) time history for the 

data during the locally stationary time interval. The second step is to 

measure a power spectrum by time averaging over the entire locally 

stationary time interval. The result will be as indicated in Figure 7. 

A(t) 

,t 

(a) rms value time history (b) time averaged power spectrum 

Figure 7. Illustration of Description for Locally Stationary Spectrum 
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From Figure 7, the area under the power spectrum is established by 

plot (a) while the shape of the power spectrum is established by plot (b). 

The advantage of the above analysis procedure over the measurement 

of a conventional short time averaged power spectrum is that, for a given 

frequency bandwidth bias error and time interval bias error, the random 

error in the measurement at any time and frequency will be very much less. 

This is true because the random error is minimized for a given time interval 

bias error by using the entire bandwidth of the data to determine the time 

varying characteristics in plot (a), and minimized for a given bandwidth 

bias error by using the entire length of the data to determine the spectral 

characteristics in plot (b). 
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4. EXPERIMENTAL STUDIES 

4. 1 GENERALAPPROACH 

The theoretical discussions in Section 3 indicate that analysis of non- 

stationary data can be greatly simplified if a locally stationary assumption 

is applicable to the data. Hence, it is desirable to establish whether or 

not this assumption is applicable to spacecraft vibration data during any 

portion of the launch phase. Because of the complexities and uncertainties I 
of available analytical models for spacecraft vibration, a direct experimental 

investigation is considered to be the most practical way to approach the 

problem. 

Typical launch vibration environments for spacecraft (or missile pay- 

loads) may be broadly attributed to three principal sources, as follows. 

1. Acoustic excitation generated by the rocket engine. 
This source is most pronounced at lift-off. 

2. Transonic excitation generated by combined shock 
wave and boundary layer activity at Mach 1. 

3. Aerodynamic excitation generated by boundary 
layer turbulence. This source is most pronounced 
at maximum dynamic pressure (max “q”) flight. 

There are, of course, other sources of excitation which might contribute 

significantly to spacecraft vibration environments. For example, self- 

excited oscillations such as resonant burning and “pogo” may produce 

intense periodic vibrations which are more damaging than the vibration 

produced by all of the above listed sources combined. Self-excited 

oscillations, how eve r, are easy to detect and can generally be analyzed 

by conventional periodic data reduction procedures, as outlined in 

Reference 1. A more common although less severe problem is the transient 

modal response of the launch vehicle to lift-off and control system loads. 

Nonstationary data of this type is sometimes quite pronounced during lift- 

off, as will be seen later. 
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There are also some very short duration transients which contribute 

to spacecraft dynamic environments. Included are ignition shocks, staging 

shocks, and explosive device operations. These short duration transients 

are not considered in this study. 

Because of the widely different nature of the sources producing vibration 

during lift - off, transonic flight, and max “q” flight, it is unlikely that a locally 

stationary assumption would apply to all three of these launch phase events 

together. On the other hand, it is feasible that the assumption might 

apply to one or more of the events individually. It is on this basis that an 

experimental investigation is approached. Specifically, if the spacecraft 

launch vibration data is locally stationary over the time interval for one of 

these events, then the power spectra measured over short contiguous time 

intervals covering the event should differ only by a constant gain factor. 

Hence, a procedure to determine whether or not actual data is locally 

stationary is as follows : 

a) Measure the short time averaged power spectrum for each 
of a series of contiguous time intervals which together 
cover the launch event of interest. 

b) Normalize the area under each measured spectrum by 
dividing the spectral level at each frequency by the mean 
square value of the data for that time interval. 

c) If the data is locally stationary, the resulting normalized 
spectra should not differ, except for variations due to 
statistical sampling considerations. 
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4.2 VEHICLES AND MEASUREMENTS 

The procedure of Section 4.1 is applied here to seven individual vibra- 

tion time history records collected during the launch of five different launch 

vehicle-spacecraft configurations. The specific vehicles and measurement 

locations for the vibration data were as follows. 

Spacecraft 

NIMBUS- 1 

Orbiting 
Geophysical 
Observatory 
(OGO - 1) 

Orbiting 
Solar 
Observatory 
(OS0 - B2) 

ECHO A-12 
(AVT - 2) 

Re -entry 
V chicle 

Table 1. 

Launch 
Vehicle 

THOR- 
AGENA 

ATLAS- 
AGENA 

THOR - 
DELTA 

THOR 

MINUTE- 
MAN 

Location 

1. Engine mount at station409 
longitudinal direction. 

2. Forward interface of AGENA 
spacecraft adaptor at station 
220, lateral direction. 

1. Base of spacecraft, lateral 
direction 

2. Base of spacecraft, 
longitudinal direction 

Interface between forward motor 
shoulder and payload attach fit- 
ting, longitudinal direction. 

Base of spacecraft adapter, 
longitudinal direction. 

Base flange of A and F shelf, 
longitudinal direction 

Measuremen 
Designation 

NIMBUS, 
Location 1 

NIMBUS, 
Location 2 

OGO, 
Location 1 

OGO, 
Location 2 

OS0 

AVT 

MINUTE- 
MAN 

Vehicles and Locations for Vibration Measurements 

The NIMBUS, OGO, OSO, and AVT measurements represent typical 

spacecraft launch vibration environments. Note that both lateral and 
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longitudinal data are included. The MINUTEMAN Re-entry Vehicle 

measurement provides an example of launch vibration where the effects of 

transonic excitation and maximum dynamic pressure excitation are clearly 

separated. This situation did not occur so distinctly in the other .available 

measurements. 

Power spectra for each of the seven vibration measurements were 

computed over short contiguous time intervals covering those portions of 

the launch phase where lift-off, transonic, and/or max “q” vibrations were 

pronounced. The approximate times after lift-off when Mach 1 and max “q” 

occurred for each vehicle were as follows. 

Approximate Time After Lift-Off, Seconds 
(to = time at lift-off) 

Measurement 
Mach 1 max “q” 

NIMBUS tot 52 tot 70 

OGO to t 55 tot 75 

OS0 to t 40 to t 60 

AVT to+ 39 tot 50 

MINUTEMAN tot 18 tot 37 

Table 2. Approximate Times to Mach 1 and Max “q” 

35 



The actual measurements of power spectra were accomplished using 

a one-third octave band filter set with a true rms value detector, an RC 

type lowpass filter averager, and a logarithmic readout. All vibration 

records were analyzed by obtaining continuous rms time history plots of 

the data in each of the one-third octaves where pertinent data existed. 

The averaging time constant used for the analysis was selected to be as long 

as possible without introducing observable time interval bias errors. Details 

are presented in Appendix B. 

The continuous rms time histories were converted into discrete 

values at specific times by recording the instantaneous rms values noted at 

equally spaced time intervals. The interval between readings was selected 

to be at least 5 RC averaging time constants (5K) to assure that each rms 

value was reasonably independent of the preceding or following value. The 

discrete rms values were then converted into mean square values in decibels 

relative to the over-all mean square value by dividing the one-third octave 

values at each time by the over-all value at that time. Since the data were 

recorded in terms of a logarithmic ordinate (decibels), the division was 

actually accomplished by subtracting the over-all value in db from the one- 

third octave values in db at each time (there is no difference between mean 

square and rms values on a db scale). The resulting relative mean square 

values in the one-third octave bands were finally converted into normalized 

power spectra (when desired) by subtracting off the frequency bandwidth 

for each third octave expressed in db. Instrumentation and data reduction 

details are presented in Appendix B. 

Note that all vibration time history records were retrieved by use 

of radio telemetry where lowpass filtering operations were involved. The 

lowpass cut-off frequencies varied from 750 to 2000 cps depending upon the 

telemetry channel used. This fact, however, is not pertinent to the 

experimental studies of interest here. 
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4. 3 RESULTS 

The over-all rms time history and the relative mean square value 

time histories for the pertinent one-third octave levels are presented in 

Appendix C. Note that the data measured during lift-off are presented on 

separate plots from the data measured during transonic and max “q” flight 

so that the time scale for lift-off can be expanded. Data are presented only 

for those cases where the indicated vibration levels exceeded the background 

noise by at least 5 db, which explains why data are omitted in certain octaves. 

A summary of the location of data in Appendix C is presented in Table 3 below. 

Figure Numbers in Appendix C 

Lift -Off Data Transonic and Max “q” Data 

Measurement 

NIMBUS, 
Location 1 

NIMBUS, 
Location 2 

OGO, 
Location 1 

OGO, 
Location 2 

OS0 

AVT 

MINUTEMAN 

not included 
data. 

Over -all One-Third 
RMS Time Octave Band 

History Levels Relative 
to Over -all 

c-4 
I 

C-6 

C-8 

Over -all 
RMS Time 

History 

c-9 

c-9 

c-12 

c-12 

None” 

because date were of poor quality or repetitious of other available 

Table 3. Summary of Reduced Data 

One -Third 
Octave Band 

Levels Relative 
to Over -all 

c-10 

c-11 

c-13 

c-14 

C-18 
- 
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To translate the data in Appendix C from relative mean square values 

to normalized power spectra, the bandwidth in db for each one-third octave 

must be subtracted from the relative’mean square value for that one-third 

octave . A list of bandwidths in db for one-third octaves is presented in 

Table 4. 

T 
I cps 
I 

12.5 2.9 4.6 
16.0 3.7 5.6 
20.0 4.6 6.6 
25. 0 5.8 7.6 
31.5 7.3 8.6 
40. 0 9.2 9.6 
50.0 11.6 10.6 
63.0 14.5 11.6 
80. 0 18. 0 12.6 

100.0 23.0 13.6 

Bandwidth 

cps .db 

Center 
Frequency 

cps 

- 
I Bandwidth 

cps db 

125 29 14.6 
160 37 15.6 
200 46 16.6 
250 58 17.6 
315 73 18.6 
400 92 19.6 
500 116 20.6 
630 145 21.6 
800 180 22.6 

1000 230 23.6 
1250 290 24.6 
1600 370 25.6 
2000 460 26.6 

Table 4. One-Third Octave Bandwidths 
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5. DISCUSSION OF EXPERIMENTAL RESULTS 

5. 1 STATISTICAL EVALUATION TECHNIQUES 

If the vibration data summarized in Appendix C are locally stationary, 

then the relative mean square value time histories for the one-third octave 

band levels should not differ “significantly” from one time to another. 

Because the basic data are random in nature, the relative mean square 

measurements are also random variables. Hence, variations due to 

statistical sampling considerations (random errors) should be expected 

in the results. The problem is to establish a criterion for deciding whether 

or not observed variations among a collection of measurements are signifi- 

cant, or simply the result of random error. 

There are several types of tests for significant differences which could 

be applied here. The simplest of these is the Fmax test, which is now 

described. Consider N sample records of vibration data, each of which 

has a mean value of zero and a mean square value of Gi2 (i = 1,2,. . . , N). 

Assume a sample mean square value, s i2 (i = 1, 2, . . . , N), is measured for 

each of the N sample records, where a similar averaging time is used for 

each measurement. be the largest of the sample mean square 

values and 
2 

Let sz,, 

s 
min 

be the smallest. If the sample records are obtained 

from the same random data (that is, if $1 = G2 = . . . = GN), then the 

sampling distribution for the maximum to minimum mean square value ratio 

is given by the F distribution. 
max 

That is, 

2 
S 

max 
= F 

2 max (43) 
S 

min 

The distribution for Fmax is a function of N, the number of sample mean 

square values, and n, the number of degrees-of-freedom for each sample 

value. 

The Fmax 
distribution may be applied as a test for significant 

differences among a collection of N mean square values as follows. 

Determine the maximum and minimum of the N mean square values. A 

100 (1 - a) “/ o confidence interval for this ratio is given by the 100 (1 - cu) 
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percentile point (or 100~~ percentage point) of the F 

bY F Now, if the ratio of s 
2 

(1 - (Y)’ 
to s 

max; max 

F”sd~rer~~;;i;;~ndenoted 

min 
F 

max; (1 - (u)’ 
the differences among the N mean square values would be 

e 
considered significant at the CY level of significance. If the ratio of 

2 2 
S to s 

min 
is less than F 

max max; (1 - 0) 
the differences among the N 

mean square values would not be considered significant. 

A table of 100 (1 -a) = 99 percentile values (Q = 0. 01) for Fmax 

is presented in decibels for various values of N and n in Table 5. 

For example, assume N = 8 mean square values are measured where 

each has n = 12 degrees-of-freedom. Further assume that the ratio of 

the maximum to minimum value is 8. 7. Does this constitute a significant 

difference? From Table 5, the difference is not significant at the 

cl = 0.01 level of significance since F 
max; 0. 99 

= 9. 6. Hence, there 

\ 
n 

n 

3 

4 

6 

8 

10 

12 

15 

20 

30 

60 

is no reason to believe that the measurements were obtained from 

different random processes. 

99 Percentile Values for F 
in Decibels 

:: 
max’ 

- 

2 3 4 5 6 7 8 9 10 11 12 

16.8 19.3 20.8 21.8 22.6 23.3 24.0 24.5 24.9 25.3 25.6 

13.7 15.7 16.9 17.7 18.4 19.0 19.5 19.9 20.3 20.5 20.8 

10.4 11.9 12.8. 13.4 14.0 14.3 14.8 15.1 15.3 15.6 15.7 

8.8 10.0 10.7 11.2 11.6 12.0 12.3 12.5 12.8 13.0 13.2 

7.7 8.7 9.3 9.8 10.2 10.5 10.7 10.9 11.1 11.3 11.4 

6.9 7.9 8.4 8.8 9.1 9.4 9.6 9.8 10.0 10.1 10.3 

6.1 6.9 7.4 7.8 8.1 8.3 8.5 8.6 8.8 8.9 9.0 

5.2 5.8 6.3 6.6 6.9 7.1 7.2 7.4 7.5 7.6 7.7 

4.2 4.8 5.2 5.4 5.6 5.7 5.8 5.9 6.0 6.1 6.2 

2.9 3.4 3.6 3.8 3.9 4.0 4.1 4.2 4.3 4.3 4.3 

::z The data in this table are obtained from Reference 13, pages 468, 469. 

Table 5. 99 Percentile Values for F Distribution 
max 
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For the experimental data of interest here, the Fmax distribution 

can be applied as a test for significant differences among N relative mean 

square values in one-third octaves if two assumptions are permitted. The 

first assumption is that the statistical variability or random error in rela- 

tive mean square value measurements for locally stationary data is the 

same as for stationary data. The second assumption is that the power 

spectral density function for the vibration data within one-third octaves is 

reasonably uniform. Neither assumption is rigorously valid, but the lack 

of validity of either assumption should tend to produce greater variability 

than predicted by the Fmax distribution. Hence, the F test should 
max 

yield conservative results. 

With the above assumptions, the degrees-of-freedom for a relative 

mean square value measurement in a one-third octave bandwidth is given 

from Reference 1, Appendix A, as 

n = 4BK (44) 

where B is the one-third octave bandwidth and K is the equivalent RC 

averaging time constant. Equation (44) assumes K is very much less than 

the available record length. 

5.2 LIFT-OFF VIBRATION DATA 

Referring to Figures C-l through C-6 in Appendix C, it is seen that the 

lift-off vibration levels for the NIMBUS and OGO measurements display 

definite common characteristics. Specifically, the over-all rms vibration 

levels are constant (within one db) for the first few seconds after to, 

and then fall off gradually as the lift-off is accomplished. The relative 

mean square values in one-third octaves tend to remain constant during the 

time intervals that the over-alls are constant (about the first two seconds 

after to for NIMBUS and the first four seconds after to for OGO). Hence, 

during the few seconds after to, the data is not just locally stationary, but 

completely stationary in terms of absolute values as well. 
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To further illustrate th-ese results, consider the summary of power 

spectra for the OGO measurements presented in Figure 8. These plots 

represent the range of eight power spectra for the vibration levels at l/2 

second intervals from t to t t 3. 5 seconds. 
0 0 

Note that the data in 

Figure 8 is for absolute power spectra values, and not for normalized 

power spectra values. A 99 percentile interval for the expected statistical 

scatter among the measurements at any frequency (based upon an F 
max 

distribution) is also included to help indicate the significance of apparent 

differences among the eight power spectra in each plot. If the vibration 

is stationary during the interval in question, there should be no significant 

differences among the power spectra computed during that interval. 

It is clear from the data in Figure 8 that an assumption of 

stationarity is acceptable for the OGO vibration measurements during the 

first three and one-half seconds of lift-off. Similar results are obtained 

for the NIMBUS vibration measurement during the first two seconds of 

lift-off. 

Referring to Figures C-7 and C-8, the lift-off vibration levels for 

the OS0 measurement present a completely different situation from the 

NIMBUS and OGO data. The over-all level during lift-off peaks and then 

falls off immediately. There is no significant time interval over which the 

lift-off vibration is stationary. Furthermore, the predominant vibration 

energy is in the low frequencies (below 100 cps) rather than in the high 

frequencies. In fact, most of the vibration energy is in the one-third octave 

centered at 16 cps. This result is due to a strong transient response of the 

launch vehicle in a longitudinal normal mode which is excited by the lift-off 

shock. Such longitudinal response is common for certain types of launch 

vehicles (the AVT measurement displayed similar characteristics during 

lift-off). High frequency vibration is probably present as it is for the 

NIMBUS and OGO measurements, but this data is completely masked by the 

intense low frequency vibration and lost in the background instrument noise. 

42 



Q 
w 

Location I - - - -99 percentile level 

-50 

I I IPlllll 

. I I I I I,,, 

I i 1  7  
250 500 lOi0 2000 

frequency, cps 

25; 5bo 

Location 2 

frequency, cps 

time interval - lift-off region from t 
0  

to to t 3.5 seconds 

Figure 8. Range of Power Spectra for OGO Lift-off Vibration 



From Figure C-8, it is seen that the relative mean square values 

in the one-third octaves display considerable variation. However, because 

the data is concentrated at low frequencies where the one-third octave 

bandwidths are narrow, and because the averaging time constant was 

relatively short (K = 0. 03), the variations do not constitute significant 

differences. For example, consider the 63 cps one-third octave where 

the variation is 14 db among only four measurements. The bandwidth is 

B = 14. 5 cps and the averaging time constant is K = 0. 03, which gives 

n < 2. From Table 5, a 99 percentile level for this case is over 20 db. 

Hence, a 14 db variation is not significant. Similar results are obtained 

for the other one-third octaves. On this basis, there is no reason to 

believe the data are not locally stationary over the first two seconds of 

lift-off. However, the power of this decision is very weak because of the 

small sample size. For various practical reasons, it is believed that the 

data would probably fail a locally stationary test under more string 

conditions. This means that a power spectrum computed by time 

averaging over such transient data could produce misleading resul 

There is another problem posed by the use of conventional 

gent 

ts. 

power 

spectra techniques for the analysis of such data. Because the data is 

heavily concentrated in a narrow frequency interval, the bandwidth of the 

bandpass filter used for a power spectral density analysis would have to 

be very narrow to avoid large bandwidth bias errors, as discussed in 

Section 3. 2. 1. In practice, it perhaps would be better to describe such 

data in terms of an rms value time history for some defined bandwidth 

(rather than normalizing the measurement to a mean square value per cps). 

Another suitable approach is to simply define the data in terms of an 

instantaneous value time history for some defined bandwidth. Since the 

data is concentrated in the lower frequencies, this can be accomplished 

easily using standard galvonometer type oscillographs. Such information 

can be used to establish an “equivalent” sinusoidal simulation of the tran- 

sient if one is prepared to accept a peak criterion for equivalent. 
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5. 3 TRANSONIC VIBRATION DATA 

Referring to Figures C-9 through C-18 in Appendix C, it is seen that 

vibration levels for all measurements are neither stationary nor locally 

stationary through the transonic region. There is a common trend in all 

data for the over-all vibration to peak near Mach 1 and to shift in frequency 

composition with energy moving from lower to higher frequencie.s. These 

effects are most obvious for the AVT and MINUTEMAN measurements. 

To further illustrate these general results, consider the summary of 

normalized power spectra for the AVT measurements presented in Figure 9. 

Plot (b) represents the range of seven normalized power spectra for the 

vibration levels in a lo-second interval covering Mach 1, which occurs at 

to + 39 seconds. Plot (a) gives the range of seven normalized power spectra 

for the vibration levels in the preceding lo-second subsonic interval, and 

Plot (c) gives the range of seven normalized power spectra for the vibration 

levels in the following lo-second supersonic interval. A 99 percentile interval 

for the expected scatter among the measurements at any frequency (based 

upon an F max distribution) is included to help indicate the significance of 

apparent differences among each group of seven normalized power spectra. 

Three principle trends are indicated by the data in Figure 9. First, 

the range of normalized power spectra values is greatest for the lo-second 

interval covering Mach 1. In this interval, the range of values constitutes 

a significant difference at nearly all frequencies, meaning the vibration is 

not locally stationary in the transonic region. Second, the range of values 

in the lo-second subsonic interval and the lo-second supersonic interval 

do not constitute a significant difference at any frequencies, meaning a 

locally stationary assumption is acceptable for the vibration measurements 

during these time intervals. Third, the vibration energy shifts sharply up 

in frequency from the subsonic interval to the supersonic interval. Similar 

results occur for all the vibration measurements in Appendix C. 
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The above results are particularly significant because the transonic 

vibration levels are often the most severe which occur during the launch 

phase. For such cases, a sample record which straddles the maximum 

vibration level is usually selected for analysis. It is effectively assumed 

that the data is reasonably stationary during this interval. However, this 

assumption is not valid, as illustrated by the AVT vibration data summary 

in Figure 9. Because of the sharp shift in the frequency composition of 

the vibration data as the vehicle passes through Mach 1, a power spectrum 

computed from a sample record covering Mach 1 may mask important 

results. 

It should be emphasized that the above conclusions apply even when 

the over-all rms value for the data is reasonably constant through the 

trans onic interval. For example, consider the over-all rms time history 

for the NIMBUS, Location 1, vibration data presented in Figure C-9 of 

Appendix C. It is seen that there is about a 15-second time interval around 

Mach 1 where the over-all vibration level is constant within 1. 5 db. A 

first impulse would be to consider the vibration data stationary during this 

interval, meaning a sample record selected for any segment of this time 

interval will represent the entire interval. This is not true, as is illustrated 

in Figure 10. 

Figure 10 includes three highly resolved (narrow bandwidth) power 

spectral density measurements for NIMBUS, Location 1, vibration data. 

All three power spectra were measured from 4-second long sample records 

covering intervals with similar over-all rms values near Mach 1, which 

occurs at about t 
0 

t 52 seconds. 

The first power spectrum, Plot (a) was measured over the time inter- 

val from t 
0 

-I 48 to t 
0 

t 52 seconds, which is at the start of the transonic peak 
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where the vehicle is still subsonic. The second power spectrum, Plot (b), 

was measured over the time interval from t 
0 

t 54 to to t 58 seconds, which 

is at the center of the transonic peak just past Mach 1. The third power 

spectrum, Plot (c), was measured over the time interval from t 
0 

t 62 to 

to + 66 seconds, which is at the end of the transonic peak where the vehicle 

is supersonic. 

From Figure 10, the shift in the spectral composition of the data is 

apparent, particularly at the low frequencies. For example, Plot (a) 

includes a relatively intense spectral peak at about 225 cps with a density 

of 0. 0008 g2/cps. In Plot (b), the peak appears with a density of 0. 0001 g2/ 

cps, or 9 db less than in Plot (a). In Plot (c), the peak is no longer signifi- 

cant. Hence, although the over-all rms vibration level did not change 

appreciably during the interval from t 
0 

+ 50 to to t 65 seconds, the 

spectral composition of the data did. 
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5.4 MAX “Q” VIBRATION DATA 

Referring again to Figures C-9 through C-18 in Appendix C, the 

over-all vibration levels for all measurements, except MINUTEMAN, fall 

off rather smoothly through the region of max “q”. One might expect to 

see a distinct peak at max “q’,’ since dynamic pressure is a key parameter 

in the vibration produced by aerodynamic boundary turbulence. However, 

for the NIMBUS, OGO, and AVT data, the rise into a max “q” vibration 

peak is masked by the after effects of transonic excitation, which is much 

more intense than the max “q” excitation for these cases. In the 

MINUTEMAN data where max “q” effects are more pronounced, the 

expected rise to a distinct max “q” vibration peak is present, as seen in 

Figure C-17. 

Now consider the relative mean square values in one-third octaves 

for the time interval around max “q” . In all cases, the relative mean square 

values are seen to remain reasonably constant over time intervals of 10 to 

20 seconds, in spite of the fact that the over-all vibration levels have 

dropped over 10 db in some cases during this interval. This point is illus- 

trated by the summary of normalized power spectra for the supersonic AVT 

measurements presented previously in Plot (c) of Figure 9. The range of 

normalized power spectra values in Plot (c) represents seven power 

spectra measurements over a lo-second time interval which includes 

max “q” at to t 50 seconds. As concluded in Section 5. 3, the range of 

normalized power spectra values does not constitute a significant difference, 

meaning a locally stationary assumption is acceptable for this time interval. 

To further illustrate this point, consider the summary of normalized 

power spectra for the NIMBUS measurements presented in Figure 11. The 

range of normalized power spectra values in Figure 11 represents eleven 

power spectra measurements over a 20-second time interval from 10 

seconds before max “q” to 10 seconds after max “q”. This range of values 
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does not constitute a significant difference at any frequency. Similar 

results occur for all other measurements in Appendix C. Hence, a locally 

stationary assumption appears to be acceptable for the nonstationary 

vibration data in the region of max “q” for time intervals of as long as 20 

seconds. 

The above results indicate that the vibration data in the region of 

max “q” may be defined by the procedure outlined in Section 3. 3. Specifically, 

the power spectrum shape can be computed from a long sample record 

covering the max “q” region, and the area under the power spectrum at any 

instant of time can be determined from an over-all rms value time 

history (area = rms2). 

To illustrate this fact, consider Figure 12 which includes four highly 

resolved power spectra computed for NIMBUS, Location 1, max “q” 

vibration. The four power spectra are computed over four contiguous 

intervals, each of five seconds duration, which together cover the period 

from to t 65 to to t 85 seconds (max “q ” occurs at about to t 70 seconds). 

Now, the data is definitely nonstationary during this total period with an 

over-all rms level that falls from about 0. 8 g’s average for the first 

interval to about 0. 35 g’s average for the fourth interval. ,However, 

based upon the over-all rms time history, the ordinate of all four power 

spectra is set up as if the over-all rms level was 0. 8 g’s in all cases. 

Note that the power spectral density at each frequency represents a mean 

square value measurement with n = 2BTr = 140 degrees-of-freedom. 

A 99 percentile level for the scatter among the four measurements at any 

frequency is estirrated from Table 5 to be about 2. 5 db (a ratio of 1. 8 to 1). 

With this in mind, it is clear that there are no significant differences 

among the four plots. 
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II 

6. CONCLUSIONS AND RECOMMENDATIONS 

Experimental studies in this document indicate that the nonstationary 

vibration data associated with spacecraft launch vibration environments 

display certain important typical characteristics. These typical character- 

istics may be summarized as follows. 

1. For those cases where lift-off vibration is due principally to 
to acoustic excitation generated by rocket engine noise, the 
vibration data during lift-off can be considered stationary for 
time intervals of two seconds or longer. For those cases 
where the lift-off vibration is due principally to a longitudinal 
modal response of the launch vehicle to lift-off shock, the 
vibration data during lift-off will be nonstationary with the 
energy concentrated around the frequency of the responding 
normal mode. 

2. The vibration data during transonic flight is highly nonstationary. 
A pronounced shift in the vibratory energy from lower to higher 
frequencies occurs as the spacecraft passes through Mach 1. 
A locally stationary assumption, however, appears to be 
acceptable for the vibration data which occurs before and after 
Mach 1. 

. The vibration data during max “q” flight is nonstationary, but 
a locally stationary assumption is generally applicable to the 
data for time intervals of up to 20 seconds. 

Based upon the above conclusions, specific procedures are now 

suggested for the analysis and description of spacecraft launch vibration 

data. The suggested procedures are intended to produce the most accurate 

and representative measurements practical for the pertinent characteristics 

of the data. Emphasis is placed upon the proper selection and detailed 

analysis of individual sample records covering critical time intervals, 

rather than a general analysis of the entire launch phase vibration. The 

selected sample records can be analyzed either by one pass through a 

55 



multiple filter type power spectral density analyzer, or by recirculation 

through a single filter type power spectral density analyzer. Of course, 

the sample records could be analyzed on a digital computer as well. 

1. Compute an over-all rms (or mean square) value time history 
record for each vibration measurement over the entire launch 
phase interval. Compute the rms value time history using an 
averaging time which is just short enough to make time 
interval bias errors negligible. See Appendix B-2 for 
details and illustrations D 

2. If there is an interval of one second or more during lift-off 
when the over-all rms vibration level is reasonably uniform, 
compute the power spectrum by averaging over this entire 
stationary interval. If there is no significant time interval 
during lift-off when the over-all rms vibration level is rea- 
sonably uniform, then the data is probably narrow in 
bandwidth and concentrated around the frequency of a 
launch vehicle normal mode. See Section 5. 2 for a dis- 
cussion of possible analysis procedures. 

3. If significant transonic vibration occurs, as it usually will, 
compute a power spectrum from a sample record which 
terminates just prior to Mach 1. The sample record should 
be two to five seconds long, depending upon the flight profile. 
Note that the time at which any measurement point on the 
spacecraft passes through Mach 1 can usually be identified 
by listening to an audio playback of the vibration signal 
recorded at that point. The typical sharp shift in the com- 
position of the vibration data at Mach 1 is clearly detectable 
by ear. 

4. If significant max “q” vibration occurs, compute a power 
spectrum for the max “q” vibration data from a sample 
record which covers the max “q” region. The length of 
the sample record should be reasonably long, at least five 
seconds, to minimize statistical errors. The length may be 
as long as 10 to 20 seconds depending upon the flight profile. 
In many cases, transonic vibration will be completely domi- 
nant over max “q” vibration to the point where no distinct 
max “q” peak is visible in the over-all rms time history. 
If this occurs, a post-Mach 1 sample record which covers 
the time of max “q” should still be analyzed. 

56 



5. All short duration transients such as ignition shocks, 
staging shocks, etc., must be detected from a plot of 
either the instantaneous vibration time history or the 
rms value time history, and analyzed separately by 
appropriate techniques. The same is true for self- 
excited oscillations such as resonant burning or “pogo:’ 
when they occur. The analysis procedures presented above 
do not apply to these cases. 

The data obtained in Steps 1 through 4 above can be used to describe 

the time varying spectral characteristics of the pertinent launch vibration 

environment, as illustrated in Figure 13. 

A(t) 

Lift-Off Mach 1 Max “Q” 

G+f) G2 (0 G3(f) 

Figure 13. Spectral Representation for Spacecraft Launch Vibration Data 
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In words, the pertinent vibration during the launch phase can be described 

by three relative power spectra representing lift-off, pre-Mach 1, and 

post-Mach 1 (max “q”) time intervals. The area under each power spectrum 

at any instant during the appropriate time interval is equal to the mean 

square value at that time from the over-all rms value time history plot. 

If it is desired to reduce the launch vibration data to a single 

“maximum spectrum” as defined in Section 1, this can be accomplished 

as follows . Compute the highest level power spectra for the lift-off, pre- 

Mach 1, and post-Mach 1 (max “q”) time intervals by adjusting the area 

under the relative power spectrum for each interval to equal the highest 

mean square value which occurred during that interval. For the pre-Mach 1 

interval, the highest mean square value will usually be at Mach 1. For 

the post-Mach 1 interval, the highest mean square value may occur at 

either Mach 1 or max “q”. In any case, superimpose the three spectra 

and record a single over-all power spectrum which covers the highest 

levels of all three. The result is a “maximum spectrum” which can be 

used as a conservative environmental specification for either vibration 

tests or design requirements. 

One final point should be mentioned. Laboratory vibration tests are 

usually performed by applying a stationary vibration input to the test 

article of interest. This is true even for spacecraft components where the 

actual environment is nonstationary in nature. For this case, the “maximum 

spectrum” would normally be used to specify the test levels. Nonstationary 

vibration testing procedures have rarely been used to date. However, the 

studies herein indicate that nonstationary vibration tests could easily be 

implemented to simulated spacecraft vibration environments. Specifically, 

the nonstationary vibration for each launch event of interest could be 

simulated as illustrated in Figure 14. 
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Figure 14. Block Diagram for Nonstationary Testing Machine 

The function generator in Figure 14 would produce a signal propor- 

tional to the rms value time history during one of the locally stationary 

time intervals . The equalizing filters would be used to shape noise to 

have the relative power spectrum associated with that time interval. The 

multiplier would produce the desired nonstationary vibration signal to be 

delivered to the shaker. 
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APPENDIX A 

EXPERIMENTAL STUDIES OF THEORETICAL MODELS 

The experime.ntal studies of the cosine product model for nonstationary 

random data were performed in the Dynamics Section Data Reduction Labora- 

tory of the Norair Division, Northrop Corporation. The test set-up used to 

study the cosine product model of Eq. (20) is illustrated schematically in 

Figure A-l. 
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.^. ----.e 
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NARROW 
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FILTER 
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. ,. ., ._.. ----_.-_,.--.- 
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OSCILLOGRAPH 
,. . _I -. .._ -_._- 

Figure A-l. Block Diagram for Studies of Cosine Product Model 

The random noise generator (Item A) was used as a source of a sample 

record from a stationary random process. The bandpass filter (Item B) was 

used to shape the power spectrum of the sample record to a sharply defined 
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narrow bandwidth of 20 cps. The voltmeter (Item C) was used to establish 

the narrow band random signal level. The sine wave generator (Item D-l) 

was used to supply the cosine function for the model, while the battery 

(Item D-2) was inserted when a zero frequency product was required. The 

cathode ray oscillograph (Item E) was used to establish the sine wave or DC 

signal level. The multiplier (Item F) was used to form the product A(t) x(t) 

which gave the desired nonstationary signal. The power spectral density 

analyzer (Item G) was used to obtain a conventional time averaged power 

spectrum. 

The instruments employed for the experiments are summarized in 

Table A- 1. 

Item Description Manufacturer 
Model 

Number 

A Random Noise Generator n General Radio Co. 

B Narrow Bandpas s Filter Spectral Dynamics Corp. 

C True RMS Voltmeter Bruel & Kjaer Instruments 

D-l Sine Wave Generator Hewlett Packard 

D-2 Battery Fabricated 

E Cathode Ray Oscilloscope Tektronix, Inc. 

F Multiplier Technical Products Co. 

G Power Spectral Density Analyzer Technical Products Co. 

1390A 

1OlA 

2409R 

200AE 

531 

645 

626 
633 
627 

Table A- 1. Instruments Used for Experiments. 

The time averaged power spectra for y(t) = A(t) x(t) presented in Figure 3 

were computed using an analyzer filter bandwidth of B = 6 cps and an RC averag- 

ing time constant of K = 8 seconds. This produced an estimate with a standard 

deviation at any frequency of c = Gy(f)/ v= z 0. 1 G (f) or 10% of the true 
Y 

value. The scan rate used was Rs = B/(4K) zz 0.2 cps/second. _ 
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APPENDIX B 

DATA REDUCTION PROCEDURES 

B. 1 INSTRUMENTS AND BASIC SET-UP 

The experimental studies of actual launch vibration data were performed 

in the Dynamics Section Data Reduction Laboratory of the Norair Division, 

Northrop Corporation. The data reduction set-up is illustrated schematically 

in Figure B-l. 

I A. 
MAGNETIC TAPE 

C. 
l/3 OCTAVE BAND I-- 

l FILTER SET I 

I D. 

1 TRUE RMS 
LEVEL RECORDER 

A 
B. 

LOOP 
TRANSPORT 

E. 
__F POWER SPECTRAL 

DENSITY ANALYZER 

Figure B- 1. Block Diagram for Studies of Launch Vibration Data 

The magnetic tape playback unit (Item A) was used to recreate the 

vibration data signals. When using the l/3 octave band equipment, each 

record of the launch phase vibration was played back repeatedly from start 

to finish. When using the power spectral density analyzer, selected intervals 

of each record were removed and spliced into a loop for continuous playback 

by recirculation with a loop transport (Item B). The l/ 3 octave band filter 

set (Item C) and the true rms level record (Item D) were used to measure 

and record rms time histories in 1 / 3 octave bands. The power spectral 

density analyzer was used to measure finely resolved (narrow bandwidth) 

power spectra for the data. 
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The instruments employed for the data reduction are summarized in 

Table B-l. 

Item Description Manufacturer 
Model 

Number 

A Magnetic Tape Playback Honeywell LAR-7300 
Unit 

B Loop Transport Ampex Corp. LR-100 

C l/3 Octave Band Filter Set Bruel& Kjaer Instruments 2112 

D True rms Level Recorder Bruel& Kjaer Instruments 2305 

E Power Spectral Density Technical Products Co. 
626 

Analyzer 
627 
645 

Table B-l. Instruments Used for Data Reduction 
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B. 2 BANDWIDTH AND AVERAGING TIME SELECTIONS 

As discussed in Section 3. 2. 1, the measurement of a short time 

averaged power spectrum will include a random error r, a bandwidth 

bias error t.~~, and a time interval bias error t.~ . 
t 

The selection of a 

bandwidth and averaging time for the measurement involves a compromise 

between these various errors. For the experiments outlined in Section 4, 

a highly resolved power spectrum (small p 
b 

) is not considered necessary 

to arrive at the desired conclusions. Hence, l/3 octave bandwidths 

(B = 0. 22f) are used rather than narrower bandwidths which would make 

‘Lb 
smaller, but also make cr larger for a given averaging time. 

The selection of an averaging time now reduces to a compromise 

between the random error m and the time interval bias error t~,~. The bias 

error pt is considered to be more detrimental to the desired conclusions 

since this error tends to mask the time trends in the data which are of 

principal interest here. Hence, the selection of an averaging time is based 

upon making the bias error TV, negligible. 
t 

For the special case of nonsta- 

tionary data where the time trend is slow relative to the instantaneous 

fluctuations of the data (as in general true for spacecraft vibration data), 

this desired averaging time selection may be accomplished as follows. 

Determine the rms value time history for the data using a very short 

averaging time. Repeat the rms value time history measurement using a 

longer averaging time. The result should be two rms value time history 

plots with similar trends but with less uncertainty fluctuation for the longer 

averaging time, as indicated in Figure B-2. This procedure can be repeated 

with increasing averaging time until it is clear that the basic time trend in the 

data is being altered or smoothed, as again indicated in Figure B-2. That 

averaging time which is just short enough to avoid noticeable smoothing of the 

under-lying time trend constitutes the maximum averaging time which can be 

used without introducing a significant time interval bias error. The critical 
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I --- 

rms 
shorter averaging time 

longer averaging time 

averaging time 

Figure &2. RMS Value Time Histories for Different Averaging Times 

requirement, of course, is to be able to distinguish between actual time 

trends in the data and inherent statistical uncertainty fluctuations (random 

errors). 

The above procedure was employed here to select averaging times for 

the power spectra measurements summarized in Appendix C. An illustration 

of the actual selection procedure for a NIMBUS measurement is presented 

in Figure B-3. The first rms value time history in Figure B-3 was obtained 

using a very short averaging time (K=O. 005 second). The extreme uncertainty 
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Figure B- 3. Averaging Time Constant Selection for NIMBUS, Location 1, 
Measurement 
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fluctuations about a basic underlying trend are clearly seen, The second rms 

value time history was obtained using a ten-fold larger averaging time 

(K = 0. 05 second). The uncertainty fluctuations have been strongly suppressed 

while the basic underlying trend has not been significantly altered. The third 

rms value time history was obtained using a still larger averaging time 

(K = 0. 12 second). It is now obvious that the averaging time is too long. The 

basic underlying trend has been significantly altered producing a large time 

interval bias error in the rms value time history data. 

The averaging time selections used for all measurements are summarized 

in Table B-2. Note that longer averaging times could have been used in some 

cases for the transonic and max “q” data. However, the averaging time required 

for proper measurements of the lift-off data was employed throughout the launch 

phase for convenience. 

Measurement 

NIMBUS 
Location 1 

NIMBUS 
Location 2 

OGO 
Location 1 

OGO 
Location 2 

OS0 

AVT 

MINUTEMAN 

Approximate Averaging Time 
Constants, Seconds 

Lift - Off Transonic and 
Data Max “Q” Data 

Over -all l/ 3 Octave Bands Over -all l/3 Octave Bands 

0. 05 0. 08 

0. 05 0. 08 

0. 05 0. 08 

0. 05 

0. 08 0. 05 

0. 08 0. 05 

0. 08 0. 05 

0. 08 0. 05 

0. 03 --mm 

---- 0. 05 

---- 0. 05 

Table B-2 Averaging Time Constant Selections 

0. 08 

0. 03 

---- 

--_- 

---- 

0. 05 

0. 05 to 0. 08 
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APPENDIX C 

MEAN SQUARE VALUE TIME HISTORY DATA 
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Figure C-l. Over-all RMS Time History for NIMBUS Lift-off Vibration 
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Figure C -2a. Relative Mean Square Values in l/3 Octave Bands for NIMBUS, 
Location 1, Lift-off Vibration 
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Figure C-2b. Relative Mean Square Values in l/3 Octave Bands for NIMBUS, 
Location 1, Lift-off Vibration 
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Figure C-2c. Relative Mean Square Values in l/ 3 Octave Bands for NIMBUS 
Location 1, Lift-off Vibration 
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Figure C-3a. Relative Mean Square Values in l/ 3 Octave Bands for NIMBUS, 
Location 2, Lift-off Vibration 
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Figure C-3b. Relative Mean Square Values in l/3 Octave Bands for NIMBUS, 
Location 2, Lift-off Vibration 
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Figure C-4. Over-all RMS Time History for OGO Lift-off Vibration 
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Figure C-5a. Relative Mean Square Values in l/3 Octave Bands for OGO, 
Location 1, Lift-off Vibration 
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Figure C-5b. Relative Mean Square Values in l/3 Octave Bands for OGO, 
Location 1, Lift-off Vibration 

79 



-20 

-25 

-30 

-20 

-25 

-10 

-15 

-20 

-10 

-15 

-5 

-10 

-15 

f_ = 250 cps B = 58 cps 

= 315 cps B = 73 cps 

fr = 500 cps B = 116 cps 

- r 
Ii - 

= 630 cps B = 145 cps 

0 1 2 3 4 5 6 

time, seconds after lift-off 

Figure C-6a. Relative Mean Square Values in l/3 Octave Bands for OGO, 
Location 2, Lift-off Vibration 
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Figure C-6b. Relative Mean Square Values in l/3 Octave Bands 
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Figure C-7. Over-all RMS Time History for OS0 Lift-off Vibration 
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Figure C-8a. Relative Mean Square Values in l/ 3 Octave Bands for 
OS0 Lift- Off Vibration 

83 



fc = 31.5 ,cps B = 7. 3 cps 

-10 

-15 

-20 

-5 

-10 

-15 

-20 

-15 

-20 

-25 

fc = 40 cps B = 9.2 cps 

f- = 50 cps B = 11.6 cps 

-5 

-10 

-15 

-20 

0 1 2 3 

Figure C-8b. Relative Mean Square Values in l/3 Octave Bands for 
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Figure C-9. Over-all RMS Time History for NIMBUS Flight Vibration 
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Figure C-18a. Relative Mean Square Values in l/3 Octave Bands for 
MINUTEMAN Flight Vibration 
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Figure C-18b. Relative Mean Square Values in l/3 Octave Bands for 
MINUTEMAN Flight Vibration 
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C-18~. Relative Mean Square Values in l/3 Octave Bands for 
MINUTEMAN Flight Vibration 
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Figure C-18d. Relative Mean Square Values in l/3 Octave Bands for 
MINUTEMAN Flight Vibration 
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